skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Field, George B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The kinetic energy of supersonic turbulence within interstellar clouds is subject to cooling by dissipation in shocks and subsequent line radiation. The clouds are therefore susceptible to a condensation process controlled by the specific entropy. In a form analogous to the thermodynamic entropy, the entropy for supersonic turbulence is proportional to the log of the product of the mean turbulent velocity and the size scale. We derive a dispersion relation for the growth of entropic instabilities in a spherical self-gravitating cloud and find that there is a critical maximum dissipation time-scale, about equal to the crossing time, that allows for fragmentation and subsequent star formation. However, the time-scale for the loss of turbulent energy may be shorter or longer, for example, with rapid thermal cooling or the injection of mechanical energy. Differences in the time-scale for energy loss in different star-forming regions may result in differences in the outcome, for example, in the initial mass function. 
    more » « less